3.3.15 \(\int \frac {\tan (e+f x)}{(d \cot (e+f x))^{3/2}} \, dx\) [215]

3.3.15.1 Optimal result
3.3.15.2 Mathematica [A] (verified)
3.3.15.3 Rubi [A] (warning: unable to verify)
3.3.15.4 Maple [B] (warning: unable to verify)
3.3.15.5 Fricas [C] (verification not implemented)
3.3.15.6 Sympy [F]
3.3.15.7 Maxima [A] (verification not implemented)
3.3.15.8 Giac [F]
3.3.15.9 Mupad [B] (verification not implemented)

3.3.15.1 Optimal result

Integrand size = 19, antiderivative size = 211 \[ \int \frac {\tan (e+f x)}{(d \cot (e+f x))^{3/2}} \, dx=-\frac {\arctan \left (1-\frac {\sqrt {2} \sqrt {d \cot (e+f x)}}{\sqrt {d}}\right )}{\sqrt {2} d^{3/2} f}+\frac {\arctan \left (1+\frac {\sqrt {2} \sqrt {d \cot (e+f x)}}{\sqrt {d}}\right )}{\sqrt {2} d^{3/2} f}+\frac {2}{3 f (d \cot (e+f x))^{3/2}}-\frac {\log \left (\sqrt {d}+\sqrt {d} \cot (e+f x)-\sqrt {2} \sqrt {d \cot (e+f x)}\right )}{2 \sqrt {2} d^{3/2} f}+\frac {\log \left (\sqrt {d}+\sqrt {d} \cot (e+f x)+\sqrt {2} \sqrt {d \cot (e+f x)}\right )}{2 \sqrt {2} d^{3/2} f} \]

output
2/3/f/(d*cot(f*x+e))^(3/2)-1/2*arctan(1-2^(1/2)*(d*cot(f*x+e))^(1/2)/d^(1/ 
2))/d^(3/2)/f*2^(1/2)+1/2*arctan(1+2^(1/2)*(d*cot(f*x+e))^(1/2)/d^(1/2))/d 
^(3/2)/f*2^(1/2)-1/4*ln(d^(1/2)+cot(f*x+e)*d^(1/2)-2^(1/2)*(d*cot(f*x+e))^ 
(1/2))/d^(3/2)/f*2^(1/2)+1/4*ln(d^(1/2)+cot(f*x+e)*d^(1/2)+2^(1/2)*(d*cot( 
f*x+e))^(1/2))/d^(3/2)/f*2^(1/2)
 
3.3.15.2 Mathematica [A] (verified)

Time = 0.10 (sec) , antiderivative size = 83, normalized size of antiderivative = 0.39 \[ \int \frac {\tan (e+f x)}{(d \cot (e+f x))^{3/2}} \, dx=-\frac {-2+3 \arctan \left (\sqrt [4]{-\cot ^2(e+f x)}\right ) \left (-\cot ^2(e+f x)\right )^{3/4}+3 \text {arctanh}\left (\sqrt [4]{-\cot ^2(e+f x)}\right ) \left (-\cot ^2(e+f x)\right )^{3/4}}{3 f (d \cot (e+f x))^{3/2}} \]

input
Integrate[Tan[e + f*x]/(d*Cot[e + f*x])^(3/2),x]
 
output
-1/3*(-2 + 3*ArcTan[(-Cot[e + f*x]^2)^(1/4)]*(-Cot[e + f*x]^2)^(3/4) + 3*A 
rcTanh[(-Cot[e + f*x]^2)^(1/4)]*(-Cot[e + f*x]^2)^(3/4))/(f*(d*Cot[e + f*x 
])^(3/2))
 
3.3.15.3 Rubi [A] (warning: unable to verify)

Time = 0.52 (sec) , antiderivative size = 207, normalized size of antiderivative = 0.98, number of steps used = 16, number of rules used = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.789, Rules used = {3042, 25, 2030, 3955, 3042, 3957, 266, 755, 1476, 1082, 217, 1479, 25, 27, 1103}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\tan (e+f x)}{(d \cot (e+f x))^{3/2}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int -\frac {1}{\tan \left (e+f x+\frac {\pi }{2}\right ) \left (-d \tan \left (e+f x+\frac {\pi }{2}\right )\right )^{3/2}}dx\)

\(\Big \downarrow \) 25

\(\displaystyle -\int \frac {1}{\tan \left (\frac {1}{2} (2 e+\pi )+f x\right ) \left (-d \tan \left (\frac {1}{2} (2 e+\pi )+f x\right )\right )^{3/2}}dx\)

\(\Big \downarrow \) 2030

\(\displaystyle d \int \frac {1}{\left (-d \tan \left (\frac {1}{2} (2 e+\pi )+f x\right )\right )^{5/2}}dx\)

\(\Big \downarrow \) 3955

\(\displaystyle d \left (\frac {2}{3 d f (d \cot (e+f x))^{3/2}}-\frac {\int \frac {1}{\sqrt {d \cot (e+f x)}}dx}{d^2}\right )\)

\(\Big \downarrow \) 3042

\(\displaystyle d \left (\frac {2}{3 d f (d \cot (e+f x))^{3/2}}-\frac {\int \frac {1}{\sqrt {-d \tan \left (e+f x+\frac {\pi }{2}\right )}}dx}{d^2}\right )\)

\(\Big \downarrow \) 3957

\(\displaystyle d \left (\frac {\int \frac {1}{\sqrt {d \cot (e+f x)} \left (\cot ^2(e+f x) d^2+d^2\right )}d(d \cot (e+f x))}{d f}+\frac {2}{3 d f (d \cot (e+f x))^{3/2}}\right )\)

\(\Big \downarrow \) 266

\(\displaystyle d \left (\frac {2 \int \frac {1}{d^4 \cot ^4(e+f x)+d^2}d\sqrt {d \cot (e+f x)}}{d f}+\frac {2}{3 d f (d \cot (e+f x))^{3/2}}\right )\)

\(\Big \downarrow \) 755

\(\displaystyle d \left (\frac {2 \left (\frac {\int \frac {d-d^2 \cot ^2(e+f x)}{d^4 \cot ^4(e+f x)+d^2}d\sqrt {d \cot (e+f x)}}{2 d}+\frac {\int \frac {d^2 \cot ^2(e+f x)+d}{d^4 \cot ^4(e+f x)+d^2}d\sqrt {d \cot (e+f x)}}{2 d}\right )}{d f}+\frac {2}{3 d f (d \cot (e+f x))^{3/2}}\right )\)

\(\Big \downarrow \) 1476

\(\displaystyle d \left (\frac {2 \left (\frac {\frac {1}{2} \int \frac {1}{d^2 \cot ^2(e+f x)-\sqrt {2} d^{3/2} \cot (e+f x)+d}d\sqrt {d \cot (e+f x)}+\frac {1}{2} \int \frac {1}{d^2 \cot ^2(e+f x)+\sqrt {2} d^{3/2} \cot (e+f x)+d}d\sqrt {d \cot (e+f x)}}{2 d}+\frac {\int \frac {d-d^2 \cot ^2(e+f x)}{d^4 \cot ^4(e+f x)+d^2}d\sqrt {d \cot (e+f x)}}{2 d}\right )}{d f}+\frac {2}{3 d f (d \cot (e+f x))^{3/2}}\right )\)

\(\Big \downarrow \) 1082

\(\displaystyle d \left (\frac {2 \left (\frac {\frac {\int \frac {1}{-d^2 \cot ^2(e+f x)-1}d\left (1-\sqrt {2} \sqrt {d} \cot (e+f x)\right )}{\sqrt {2} \sqrt {d}}-\frac {\int \frac {1}{-d^2 \cot ^2(e+f x)-1}d\left (\sqrt {2} \sqrt {d} \cot (e+f x)+1\right )}{\sqrt {2} \sqrt {d}}}{2 d}+\frac {\int \frac {d-d^2 \cot ^2(e+f x)}{d^4 \cot ^4(e+f x)+d^2}d\sqrt {d \cot (e+f x)}}{2 d}\right )}{d f}+\frac {2}{3 d f (d \cot (e+f x))^{3/2}}\right )\)

\(\Big \downarrow \) 217

\(\displaystyle d \left (\frac {2 \left (\frac {\int \frac {d-d^2 \cot ^2(e+f x)}{d^4 \cot ^4(e+f x)+d^2}d\sqrt {d \cot (e+f x)}}{2 d}+\frac {\frac {\arctan \left (\sqrt {2} \sqrt {d} \cot (e+f x)+1\right )}{\sqrt {2} \sqrt {d}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {d} \cot (e+f x)\right )}{\sqrt {2} \sqrt {d}}}{2 d}\right )}{d f}+\frac {2}{3 d f (d \cot (e+f x))^{3/2}}\right )\)

\(\Big \downarrow \) 1479

\(\displaystyle d \left (\frac {2 \left (\frac {-\frac {\int -\frac {\sqrt {2} \sqrt {d}-2 \sqrt {d \cot (e+f x)}}{d^2 \cot ^2(e+f x)-\sqrt {2} d^{3/2} \cot (e+f x)+d}d\sqrt {d \cot (e+f x)}}{2 \sqrt {2} \sqrt {d}}-\frac {\int -\frac {\sqrt {2} \left (\sqrt {d}+\sqrt {2} \sqrt {d \cot (e+f x)}\right )}{d^2 \cot ^2(e+f x)+\sqrt {2} d^{3/2} \cot (e+f x)+d}d\sqrt {d \cot (e+f x)}}{2 \sqrt {2} \sqrt {d}}}{2 d}+\frac {\frac {\arctan \left (\sqrt {2} \sqrt {d} \cot (e+f x)+1\right )}{\sqrt {2} \sqrt {d}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {d} \cot (e+f x)\right )}{\sqrt {2} \sqrt {d}}}{2 d}\right )}{d f}+\frac {2}{3 d f (d \cot (e+f x))^{3/2}}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle d \left (\frac {2 \left (\frac {\frac {\int \frac {\sqrt {2} \sqrt {d}-2 \sqrt {d \cot (e+f x)}}{d^2 \cot ^2(e+f x)-\sqrt {2} d^{3/2} \cot (e+f x)+d}d\sqrt {d \cot (e+f x)}}{2 \sqrt {2} \sqrt {d}}+\frac {\int \frac {\sqrt {2} \left (\sqrt {d}+\sqrt {2} \sqrt {d \cot (e+f x)}\right )}{d^2 \cot ^2(e+f x)+\sqrt {2} d^{3/2} \cot (e+f x)+d}d\sqrt {d \cot (e+f x)}}{2 \sqrt {2} \sqrt {d}}}{2 d}+\frac {\frac {\arctan \left (\sqrt {2} \sqrt {d} \cot (e+f x)+1\right )}{\sqrt {2} \sqrt {d}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {d} \cot (e+f x)\right )}{\sqrt {2} \sqrt {d}}}{2 d}\right )}{d f}+\frac {2}{3 d f (d \cot (e+f x))^{3/2}}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle d \left (\frac {2 \left (\frac {\frac {\int \frac {\sqrt {2} \sqrt {d}-2 \sqrt {d \cot (e+f x)}}{d^2 \cot ^2(e+f x)-\sqrt {2} d^{3/2} \cot (e+f x)+d}d\sqrt {d \cot (e+f x)}}{2 \sqrt {2} \sqrt {d}}+\frac {\int \frac {\sqrt {d}+\sqrt {2} \sqrt {d \cot (e+f x)}}{d^2 \cot ^2(e+f x)+\sqrt {2} d^{3/2} \cot (e+f x)+d}d\sqrt {d \cot (e+f x)}}{2 \sqrt {d}}}{2 d}+\frac {\frac {\arctan \left (\sqrt {2} \sqrt {d} \cot (e+f x)+1\right )}{\sqrt {2} \sqrt {d}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {d} \cot (e+f x)\right )}{\sqrt {2} \sqrt {d}}}{2 d}\right )}{d f}+\frac {2}{3 d f (d \cot (e+f x))^{3/2}}\right )\)

\(\Big \downarrow \) 1103

\(\displaystyle d \left (\frac {2 \left (\frac {\frac {\arctan \left (\sqrt {2} \sqrt {d} \cot (e+f x)+1\right )}{\sqrt {2} \sqrt {d}}-\frac {\arctan \left (1-\sqrt {2} \sqrt {d} \cot (e+f x)\right )}{\sqrt {2} \sqrt {d}}}{2 d}+\frac {\frac {\log \left (\sqrt {2} d^{3/2} \cot (e+f x)+d^2 \cot ^2(e+f x)+d\right )}{2 \sqrt {2} \sqrt {d}}-\frac {\log \left (-\sqrt {2} d^{3/2} \cot (e+f x)+d^2 \cot ^2(e+f x)+d\right )}{2 \sqrt {2} \sqrt {d}}}{2 d}\right )}{d f}+\frac {2}{3 d f (d \cot (e+f x))^{3/2}}\right )\)

input
Int[Tan[e + f*x]/(d*Cot[e + f*x])^(3/2),x]
 
output
d*(2/(3*d*f*(d*Cot[e + f*x])^(3/2)) + (2*((-(ArcTan[1 - Sqrt[2]*Sqrt[d]*Co 
t[e + f*x]]/(Sqrt[2]*Sqrt[d])) + ArcTan[1 + Sqrt[2]*Sqrt[d]*Cot[e + f*x]]/ 
(Sqrt[2]*Sqrt[d]))/(2*d) + (-1/2*Log[d - Sqrt[2]*d^(3/2)*Cot[e + f*x] + d^ 
2*Cot[e + f*x]^2]/(Sqrt[2]*Sqrt[d]) + Log[d + Sqrt[2]*d^(3/2)*Cot[e + f*x] 
 + d^2*Cot[e + f*x]^2]/(2*Sqrt[2]*Sqrt[d]))/(2*d)))/(d*f))
 

3.3.15.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 217
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[-b, 2])^( 
-1))*ArcTan[Rt[-b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] & 
& (LtQ[a, 0] || LtQ[b, 0])
 

rule 266
Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2)^(p_), x_Symbol] :> With[{k = De 
nominator[m]}, Simp[k/c   Subst[Int[x^(k*(m + 1) - 1)*(a + b*(x^(2*k)/c^2)) 
^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && FractionQ[m] && I 
ntBinomialQ[a, b, c, 2, m, p, x]
 

rule 755
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2] 
], s = Denominator[Rt[a/b, 2]]}, Simp[1/(2*r)   Int[(r - s*x^2)/(a + b*x^4) 
, x], x] + Simp[1/(2*r)   Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[{a, 
 b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] & 
& AtomQ[SplitProduct[SumBaseQ, b]]))
 

rule 1082
Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*S 
implify[a*(c/b^2)]}, Simp[-2/b   Subst[Int[1/(q - x^2), x], x, 1 + 2*c*(x/b 
)], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /; Fre 
eQ[{a, b, c}, x]
 

rule 1103
Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> S 
imp[d*(Log[RemoveContent[a + b*x + c*x^2, x]]/b), x] /; FreeQ[{a, b, c, d, 
e}, x] && EqQ[2*c*d - b*e, 0]
 

rule 1476
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
2*(d/e), 2]}, Simp[e/(2*c)   Int[1/Simp[d/e + q*x + x^2, x], x], x] + Simp[ 
e/(2*c)   Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e}, x] 
 && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]
 

rule 1479
Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[ 
-2*(d/e), 2]}, Simp[e/(2*c*q)   Int[(q - 2*x)/Simp[d/e + q*x - x^2, x], x], 
 x] + Simp[e/(2*c*q)   Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /; F 
reeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]
 

rule 2030
Int[(Fx_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Simp[1/b^m   Int[(b*v) 
^(m + n)*Fx, x], x] /; FreeQ[{b, n}, x] && IntegerQ[m]
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3955
Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Tan[c + d*x] 
)^(n + 1)/(b*d*(n + 1)), x] - Simp[1/b^2   Int[(b*Tan[c + d*x])^(n + 2), x] 
, x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1]
 

rule 3957
Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[b/d   Subst[Int 
[x^n/(b^2 + x^2), x], x, b*Tan[c + d*x]], x] /; FreeQ[{b, c, d, n}, x] && 
!IntegerQ[n]
 
3.3.15.4 Maple [B] (warning: unable to verify)

Leaf count of result is larger than twice the leaf count of optimal. \(570\) vs. \(2(160)=320\).

Time = 2.72 (sec) , antiderivative size = 571, normalized size of antiderivative = 2.71

method result size
default \(\frac {\left (-6 \sqrt {-\frac {\sin \left (f x +e \right ) \cos \left (f x +e \right )}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \sin \left (f x +e \right ) \arctan \left (\frac {\sqrt {2}\, \sqrt {-\frac {\sin \left (f x +e \right ) \cos \left (f x +e \right )}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \sin \left (f x +e \right )+\cos \left (f x +e \right )-1}{\cos \left (f x +e \right )-1}\right )-6 \sqrt {-\frac {\sin \left (f x +e \right ) \cos \left (f x +e \right )}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \sin \left (f x +e \right ) \arctan \left (\frac {\sqrt {2}\, \sqrt {-\frac {\sin \left (f x +e \right ) \cos \left (f x +e \right )}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \sin \left (f x +e \right )-\cos \left (f x +e \right )+1}{\cos \left (f x +e \right )-1}\right )+3 \sqrt {-\frac {\sin \left (f x +e \right ) \cos \left (f x +e \right )}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \sin \left (f x +e \right ) \ln \left (-\frac {\cot \left (f x +e \right ) \cos \left (f x +e \right )-2 \cot \left (f x +e \right )+2 \sin \left (f x +e \right ) \sqrt {-\left (\cot ^{3}\left (f x +e \right )\right )+3 \left (\cot ^{2}\left (f x +e \right )\right ) \csc \left (f x +e \right )-3 \left (\csc ^{2}\left (f x +e \right )\right ) \cot \left (f x +e \right )+\csc ^{3}\left (f x +e \right )+\cot \left (f x +e \right )-\csc \left (f x +e \right )}-2 \cos \left (f x +e \right )-\sin \left (f x +e \right )+\csc \left (f x +e \right )+2}{\cos \left (f x +e \right )-1}\right )-3 \sin \left (f x +e \right ) \sqrt {-\frac {\sin \left (f x +e \right ) \cos \left (f x +e \right )}{\left (\cos \left (f x +e \right )+1\right )^{2}}}\, \ln \left (-\frac {\cot \left (f x +e \right ) \cos \left (f x +e \right )-2 \cot \left (f x +e \right )-2 \sin \left (f x +e \right ) \sqrt {-\left (\cot ^{3}\left (f x +e \right )\right )+3 \left (\cot ^{2}\left (f x +e \right )\right ) \csc \left (f x +e \right )-3 \left (\csc ^{2}\left (f x +e \right )\right ) \cot \left (f x +e \right )+\csc ^{3}\left (f x +e \right )+\cot \left (f x +e \right )-\csc \left (f x +e \right )}-2 \cos \left (f x +e \right )-\sin \left (f x +e \right )+\csc \left (f x +e \right )+2}{\cos \left (f x +e \right )-1}\right )+4 \sqrt {2}\, \sin \left (f x +e \right )-4 \tan \left (f x +e \right ) \sqrt {2}\right ) \sqrt {2}}{12 f \left (\cos \left (f x +e \right )-1\right ) d \sqrt {\cot \left (f x +e \right ) d}}\) \(571\)

input
int(tan(f*x+e)/(cot(f*x+e)*d)^(3/2),x,method=_RETURNVERBOSE)
 
output
1/12/f/(cos(f*x+e)-1)/d/(cot(f*x+e)*d)^(1/2)*(-6*(-sin(f*x+e)*cos(f*x+e)/( 
cos(f*x+e)+1)^2)^(1/2)*sin(f*x+e)*arctan((2^(1/2)*(-sin(f*x+e)*cos(f*x+e)/ 
(cos(f*x+e)+1)^2)^(1/2)*sin(f*x+e)+cos(f*x+e)-1)/(cos(f*x+e)-1))-6*(-sin(f 
*x+e)*cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)*sin(f*x+e)*arctan((2^(1/2)*(-sin( 
f*x+e)*cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)*sin(f*x+e)-cos(f*x+e)+1)/(cos(f* 
x+e)-1))+3*(-sin(f*x+e)*cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)*sin(f*x+e)*ln(- 
(cot(f*x+e)*cos(f*x+e)-2*cot(f*x+e)+2*sin(f*x+e)*(-cot(f*x+e)^3+3*cot(f*x+ 
e)^2*csc(f*x+e)-3*csc(f*x+e)^2*cot(f*x+e)+csc(f*x+e)^3+cot(f*x+e)-csc(f*x+ 
e))^(1/2)-2*cos(f*x+e)-sin(f*x+e)+csc(f*x+e)+2)/(cos(f*x+e)-1))-3*sin(f*x+ 
e)*(-sin(f*x+e)*cos(f*x+e)/(cos(f*x+e)+1)^2)^(1/2)*ln(-(cot(f*x+e)*cos(f*x 
+e)-2*cot(f*x+e)-2*sin(f*x+e)*(-cot(f*x+e)^3+3*cot(f*x+e)^2*csc(f*x+e)-3*c 
sc(f*x+e)^2*cot(f*x+e)+csc(f*x+e)^3+cot(f*x+e)-csc(f*x+e))^(1/2)-2*cos(f*x 
+e)-sin(f*x+e)+csc(f*x+e)+2)/(cos(f*x+e)-1))+4*2^(1/2)*sin(f*x+e)-4*tan(f* 
x+e)*2^(1/2))*2^(1/2)
 
3.3.15.5 Fricas [C] (verification not implemented)

Result contains complex when optimal does not.

Time = 0.26 (sec) , antiderivative size = 214, normalized size of antiderivative = 1.01 \[ \int \frac {\tan (e+f x)}{(d \cot (e+f x))^{3/2}} \, dx=\frac {3 \, d^{2} f \left (-\frac {1}{d^{6} f^{4}}\right )^{\frac {1}{4}} \log \left (d^{2} f \left (-\frac {1}{d^{6} f^{4}}\right )^{\frac {1}{4}} + \sqrt {\frac {d}{\tan \left (f x + e\right )}}\right ) + 3 i \, d^{2} f \left (-\frac {1}{d^{6} f^{4}}\right )^{\frac {1}{4}} \log \left (i \, d^{2} f \left (-\frac {1}{d^{6} f^{4}}\right )^{\frac {1}{4}} + \sqrt {\frac {d}{\tan \left (f x + e\right )}}\right ) - 3 i \, d^{2} f \left (-\frac {1}{d^{6} f^{4}}\right )^{\frac {1}{4}} \log \left (-i \, d^{2} f \left (-\frac {1}{d^{6} f^{4}}\right )^{\frac {1}{4}} + \sqrt {\frac {d}{\tan \left (f x + e\right )}}\right ) - 3 \, d^{2} f \left (-\frac {1}{d^{6} f^{4}}\right )^{\frac {1}{4}} \log \left (-d^{2} f \left (-\frac {1}{d^{6} f^{4}}\right )^{\frac {1}{4}} + \sqrt {\frac {d}{\tan \left (f x + e\right )}}\right ) + 4 \, \sqrt {\frac {d}{\tan \left (f x + e\right )}} \tan \left (f x + e\right )^{2}}{6 \, d^{2} f} \]

input
integrate(tan(f*x+e)/(d*cot(f*x+e))^(3/2),x, algorithm="fricas")
 
output
1/6*(3*d^2*f*(-1/(d^6*f^4))^(1/4)*log(d^2*f*(-1/(d^6*f^4))^(1/4) + sqrt(d/ 
tan(f*x + e))) + 3*I*d^2*f*(-1/(d^6*f^4))^(1/4)*log(I*d^2*f*(-1/(d^6*f^4)) 
^(1/4) + sqrt(d/tan(f*x + e))) - 3*I*d^2*f*(-1/(d^6*f^4))^(1/4)*log(-I*d^2 
*f*(-1/(d^6*f^4))^(1/4) + sqrt(d/tan(f*x + e))) - 3*d^2*f*(-1/(d^6*f^4))^( 
1/4)*log(-d^2*f*(-1/(d^6*f^4))^(1/4) + sqrt(d/tan(f*x + e))) + 4*sqrt(d/ta 
n(f*x + e))*tan(f*x + e)^2)/(d^2*f)
 
3.3.15.6 Sympy [F]

\[ \int \frac {\tan (e+f x)}{(d \cot (e+f x))^{3/2}} \, dx=\int \frac {\tan {\left (e + f x \right )}}{\left (d \cot {\left (e + f x \right )}\right )^{\frac {3}{2}}}\, dx \]

input
integrate(tan(f*x+e)/(d*cot(f*x+e))**(3/2),x)
 
output
Integral(tan(e + f*x)/(d*cot(e + f*x))**(3/2), x)
 
3.3.15.7 Maxima [A] (verification not implemented)

Time = 0.35 (sec) , antiderivative size = 190, normalized size of antiderivative = 0.90 \[ \int \frac {\tan (e+f x)}{(d \cot (e+f x))^{3/2}} \, dx=\frac {d^{2} {\left (\frac {3 \, {\left (\frac {2 \, \sqrt {2} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {d} + 2 \, \sqrt {\frac {d}{\tan \left (f x + e\right )}}\right )}}{2 \, \sqrt {d}}\right )}{d^{\frac {3}{2}}} + \frac {2 \, \sqrt {2} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {d} - 2 \, \sqrt {\frac {d}{\tan \left (f x + e\right )}}\right )}}{2 \, \sqrt {d}}\right )}{d^{\frac {3}{2}}} + \frac {\sqrt {2} \log \left (\sqrt {2} \sqrt {d} \sqrt {\frac {d}{\tan \left (f x + e\right )}} + d + \frac {d}{\tan \left (f x + e\right )}\right )}{d^{\frac {3}{2}}} - \frac {\sqrt {2} \log \left (-\sqrt {2} \sqrt {d} \sqrt {\frac {d}{\tan \left (f x + e\right )}} + d + \frac {d}{\tan \left (f x + e\right )}\right )}{d^{\frac {3}{2}}}\right )}}{d^{2}} + \frac {8}{d^{2} \left (\frac {d}{\tan \left (f x + e\right )}\right )^{\frac {3}{2}}}\right )}}{12 \, f} \]

input
integrate(tan(f*x+e)/(d*cot(f*x+e))^(3/2),x, algorithm="maxima")
 
output
1/12*d^2*(3*(2*sqrt(2)*arctan(1/2*sqrt(2)*(sqrt(2)*sqrt(d) + 2*sqrt(d/tan( 
f*x + e)))/sqrt(d))/d^(3/2) + 2*sqrt(2)*arctan(-1/2*sqrt(2)*(sqrt(2)*sqrt( 
d) - 2*sqrt(d/tan(f*x + e)))/sqrt(d))/d^(3/2) + sqrt(2)*log(sqrt(2)*sqrt(d 
)*sqrt(d/tan(f*x + e)) + d + d/tan(f*x + e))/d^(3/2) - sqrt(2)*log(-sqrt(2 
)*sqrt(d)*sqrt(d/tan(f*x + e)) + d + d/tan(f*x + e))/d^(3/2))/d^2 + 8/(d^2 
*(d/tan(f*x + e))^(3/2)))/f
 
3.3.15.8 Giac [F]

\[ \int \frac {\tan (e+f x)}{(d \cot (e+f x))^{3/2}} \, dx=\int { \frac {\tan \left (f x + e\right )}{\left (d \cot \left (f x + e\right )\right )^{\frac {3}{2}}} \,d x } \]

input
integrate(tan(f*x+e)/(d*cot(f*x+e))^(3/2),x, algorithm="giac")
 
output
integrate(tan(f*x + e)/(d*cot(f*x + e))^(3/2), x)
 
3.3.15.9 Mupad [B] (verification not implemented)

Time = 0.32 (sec) , antiderivative size = 80, normalized size of antiderivative = 0.38 \[ \int \frac {\tan (e+f x)}{(d \cot (e+f x))^{3/2}} \, dx=\frac {2}{3\,f\,{\left (\frac {d}{\mathrm {tan}\left (e+f\,x\right )}\right )}^{3/2}}-\frac {{\left (-1\right )}^{1/4}\,\mathrm {atan}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {\frac {d}{\mathrm {tan}\left (e+f\,x\right )}}}{\sqrt {d}}\right )\,1{}\mathrm {i}}{d^{3/2}\,f}-\frac {{\left (-1\right )}^{1/4}\,\mathrm {atanh}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {\frac {d}{\mathrm {tan}\left (e+f\,x\right )}}}{\sqrt {d}}\right )\,1{}\mathrm {i}}{d^{3/2}\,f} \]

input
int(tan(e + f*x)/(d*cot(e + f*x))^(3/2),x)
 
output
2/(3*f*(d/tan(e + f*x))^(3/2)) - ((-1)^(1/4)*atan(((-1)^(1/4)*(d/tan(e + f 
*x))^(1/2))/d^(1/2))*1i)/(d^(3/2)*f) - ((-1)^(1/4)*atanh(((-1)^(1/4)*(d/ta 
n(e + f*x))^(1/2))/d^(1/2))*1i)/(d^(3/2)*f)